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Abstract— Mobile ad hoc networks do not have fixed 
infrastructure. Nodes are keep on joining and leaving the 
network dynamically. Assigning addresses for mobile nodes is 
a challenging task. The difficulty is even raised due partitions 
in network and dynamic joining and leaving of the nodes in 
MANET. Address collisions are quite a common problem in 
mobile ad hoc networks. Here, a light weight protocol called 
Filter-based Addressing Protocol (FAP) is used to solve this 
problem that configures mobile ad hoc nodes based on a 
distributed address database stored in filters. This paper 
describe the use of two    filters cuckoo filter and sequence 
filter to design a filter based protocol. 
Cuckoo filters is used to adding and removing items 
dynamically while achieving higher lookup performance and 
also use less space than conventional Bloom filters for 
applications that require low false positive rates. Cuckoo 
filters also have lower space overhead than space-optimized 
Bloom filters. 
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I.  INTRODUCTION 
Mobile ad hoc networks connect mobile devices in an 
infrastructure without wires and configure themselves 
continuously to connect with network.Mobile nodes are free 
to move in the network as per their wish and have 
frequently changing positions and links. But every node in 
network acts as a router. creating a mobile ad hoc network 
means providing each node with the necessary information 
for routing the traffic [4]. These networks may operate by 
themselves or may get connected to larger internet. This 
makes it a dynamic, autonomous topology[10]. 

Fig.1  MANET 

Now-a-days, many distributed applications prefer mobile ad 
hoc networks as there is no centralized administration. 
Mobile ad hoc networks are based on dynamic multihop 
topologies for communication and do not have any previous 
infrastructure. In addition, network partitioning is a 
significant problem which unfortunately is not properly 
taken care of Mobility of nodes, channel fading and many 
other issues disturb the control over the distributed network. 
Initialization of network is also not an easy task due to the 
lack of servers [11]. Achieving multi-hop routing and full 
connectivity makes a unique addressing network is more 
essential. Self-management makes this network more 
complex. Further,DHCP (Dynamic Host configuration 
protocol) and NAT(Network Allocation Table) do not serve 
the distributed nature like dynamic partitioning and 
merging of the network. This paper describes the FAP 
model which uses filters to solving the above mentioned 
issues.Here, distributed database containing the currently 
allocated addresses is maintained in filters in a compact 
fashion [4]. To design a filter-based protocol, here use two 
filters called a Cuckoo and a Sequence filter. This scheme 
ensures not only the univocal address configuration of the 
nodes joining the mobile network and address collision 
detection after partition merging. this is a simple way 
because here every node has the knowledge of the already 
assigned addresses. Also, to easily detect network 
partitions.in this technique a hash of the filter is provided as 
the partition identifier [4]. But here used Cuckoo filter 
instead of conventional Boom filters. Because Cuckoo 
filters allow adding and removing items dynamically while 
achieving higher lookup performance [13], and also use less 
space than conventional and non-deletion-supporting 
Bloom filters [1]. Here we presents the cuckoo filter, It is a 
data structure that can replace both counting and traditional 
Bloom filters with three major advantages: 
1. itsupports adding and removing items dynamically;
2. itachieves higher lookup performance; and
3. it requiresless space than a space-optimized Bloom
filter when  the target false positive rate e is less than 3%. 

II. RELATED WORK

2.1. Sequence Filters: 
Another structure to store and compact addresses based on 
the sequence of the addresses called Sequence filter. In this 
filter, each address suffix is represented by one bit. The 
position of the bit in the filter determines the address suffix, 
Therefore, there is no false-positive or false-negative in the 
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Sequence filter. It stores and compacts addresses based on 
the sequence of addresses. This filter is created bythe 
concatenation of the first address of the address sequence, 
which they call initial element (a0), with a r-bit vector, 
where r is the address range size [4]. 
2.2. Bloom Filters: 
Bloom filters are a data structure with high compression 
capacity, used on many applications, like IP traceback [4][5] 
and web cache [9]. A Bloom filter is a vector of m bits 
representing a set A = {a1, a2, a3, . . . , an} composed of n 
elements. The elements are inserted in the filter through a 
set of independents hash functions (h1, h2, . . . ,hk) whose 
outputs are uniformly distributed over m bits. Firstly, the bit 
vector is set to zero. After that, each element ai ∈ A is 
hashed by each of the k hash functions, which result 
represents a position to be set as 1 on the m bit vector, as 
shown in Fig. 1. To verify if an element aj belongs to A, 
They check whether the bits of the array corresponding to 
the positions h1(aj), h2(aj), . . . ,hk(aj) are all set to 1. If at 
least one bitis set to 0, then aj is not on the filter. On the 
contrary, it is assumed that the element belongs to A. There 
is, however, a probability of false-positives [3]. By the 
probability of a bit to be 0 after the insertion of n elements, 
P0, given by, 

P0 = (1-  )kn……………………. (1) 

They obtain the false-positive probability, Pfp, given by, 

Pfp = (1- P0)
k = (1- (1-  )kn )k…..(2) 

 
Fig.2. Insertion of elements in the filter. 

 
Equation-2. shows that the false-positive probability 
decreases when the number of elements, n, of set A is 
decreased or the size of the filter, m, is increased. Besides, 
by the derivative of Eq. 2, they obtain the value of k that 
minimizes the false positive probability, which is given by, 

K = [ ]…………………… (3) 

To remove elements from the filter, a counter for each bit of 
the filter is introduced, as shown in Fig.3. Each counter ci, 

shows the number of times each bit was set, and ∑0
m−10  

gives the number of elements on the filter. the authors [7] 

show that the probability of a counter be greater or equal to 
i, P(c ≥ i), is given by, 

P(c ≥ i) ≤ m ( )i…………....(4) 

To avoid false-negatives, it is necessary to guarantee that 
the counters do not overflow. Supposing 4-bit counters (i = 
16), a false-positive ratio of 5% and the corresponding ideal 
k, the overflow probability is lower than m・10−12, which 
is considered negligible [3][7]. 

 

 
Fig.3. Bloom filter with counters. 

 
2.3 Bloom Filters and Variants: 
Here we compare standard Bloom filters and the variants 
that include support for deletion or better lookup 
performance.Cuckoo filters achieve higher space efficiency 
and performance than these data structures [1]. 
2.3.1. Standard Bloom filters [9]:  
This filter provides a compact representation of a set of 
items that supports two operations: Insert and Lookup. A 
Bloom filter allows a tunable false positive rate Є so that a 
query returns either “definitely not” (with no error),or 
“probably yes” (with probability Є of being wrong). 
Thelower Є is, the more space the filter requires.A Bloom 
filter consists of k hash functions and a bit arraywith all bits 
initially set to “0”. To insert an item, it hashesthis item to k 
positions in the bit array by k hash functions,and then sets 
all k bits to “1”. Lookup is processed similarly,except it 
reads k corresponding bits in the array: if all thebits are set, 
the query returns true; otherwise it returns false.Bloom 
filters do not support deletion. Bloom filters can be very 
space-efficient, but are not optimal [3]. For a false positive 
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rate Є, a space-optimized Bloom filter uses k = log2 (1/Є) 
hash functions. Such a Bloom filter can store each item 
using 1.44 log2 (1/Є) bits, which depends only on (1/Є) 
rather than the item size or the total number of items.The 
information-theoretic minimum requires log2 (1/Є) bits per 
item, so a space-optimized Bloom filter imposes a 
44%space overhead over the information-theoretic lower 
bound.The information theoretic optimum is essentially 
achievable for a static set by using fingerprints and a perfect 
hash table [6]. To efficiently handle deletions, we replace a 
perfect hash function with a well-designed cuckoo hash 
table [13]. 
2.3.2 Counting Bloom filters [7]: 
This extend Bloom filters to allow deletions. A counting 
Bloom filter uses an array of countersin place of an array of 
bits. An insert increment the value of k counters instead of 
simply setting k bits, and a lookupchecks if each of the 
required counters is non-zero. The delete operation 
decrements the values of these k counters. To prevent 
arithmetic overflow (i.e., incrementing a counter that hasthe 
maximum possible value), each counter in the array must be 
sufficiently large in order to retain the Bloom filter’s 
properties.In practice, the counter consists of four or more 
bits,and a counting Bloom filter therefore requires 4X more 
spacethan a standard Bloom filter. (One can construct 
countingBloom filters to use less space by introducing a 
secondary hash table structure to manage overflowing 
counters, at the expense of additional complexity.) 
2.3.3 Blocked Bloom filters [10]: do not support deletion, 
but providebetter spatial locality on lookups. A blocked 
Bloom filter consists of an array of small Bloom filters, 
each fitting in one CPU cache line. Each item is stored in 
only one of these small Bloom filters determined by hash 
partitioning. As a result,every query causes at most one 
cache miss to load that Bloomfilter, which significantly 
improves performance. A drawbackis that the false positive 
rate becomes higher because of theimbalanced load across 
the array of small Bloom filters. 
2.3.4 d-left Counting Bloom filters [5]: are similar to the 
approach we use here. Hash tables using d-left hashing [9] 
store fingerprints for stored items. These filters delete items 
by removing their fingerprint. Compared to counting Bloom 
filters, they reduce the space cost by 50%, usually requiring 
1.5-2X thespace compared to a space-optimized non-
deletable Bloom filter. Cuckoo filters achieve better space 
efficiency than d-leftcounting Bloom filters as we show, 
and have other advantages,including simplicity. 
2.3.5 Quotient filters [9]: are also compact hash tables that 
storefingerprints to support deletion. Quotient filters uses a 
technique similar to linear probing to locate a fingerprint, 
and thus provide better spatial locality. However, they 
require additional meta-data to encode each entry, which 
requires 10 ~ 25% more space than a comparable standard 
Bloomfilter. Moreover, all of its operations must decode a 
sequence of table entries before reaching the target item, 
and the morethe hash table is filled, the longer these 
sequences become.As a result, its performance drops 
significantly when the occupancyof the hash table exceeds 
75%. 

2.3.6 Limitations of conventional Bloom filters [1]: One 
major limitation of Bloom filters is that the existing items 
cannotbe removed without rebuilding the entire filter. 
Severalproposals have extended classic Bloom filters to 
supportdeletion, but with significant space overhead: 
counting Bloom filters [3] are 4Xlarger and the recent d-
leftcounting Bloom filters (dl-CBFs) [8], which adopt a 
hashtable-based approach, are still about 2X larger than a 
space-optimized Bloom filter. 

 
III. PROPOSED WORK. 

FILTER-BASED ADDRESSING PROTOCOL (FAP) : 
This protocol aims to dynamically auto-configure 
addresses, identifying and solving addresses collisions with 
a low control load, even when there are nodes joining the 
network or partition merging [3][5]. To obtained all these 
objectives, Here we used the Filter-based Addressing 
Protocol (FAP) that uses filters as data structure to 
compactly represent the current set of allocated addresses. 
With filters, the partition detection becomes easier and the 
number of control messages is reduced. They also use the 
hash of the filter, that represent filter signature, as a 
partition identifier. The filter signature represents a set of 
nodes, and fits well for easily detecting partitions on the 
network. It uses the filter signature ( a hash of the filter) as 
a partition identifier instead of random numbers. The filter 
signature (i.e.Hash of filter) represents the set of all the 
nodes within the partition. Therefore, if the set of assigned 
address of the node is changes, the filter signature also 
changes.Filter is present at every node to simplify frequent 
node joining events and reduce the control overhead 
required to solve address collisions inherent in random 
assignments [10]. 
 

 
Fig. 4 Filtering of Traffic at different layers. 

 
Centralized addressing schemes are not suitable for mobile 
adhoc networks because there are no servers. Further, 
simple distributed schemes are vulnerable to duplicated 
addresses which may result in high probability of address 
collisions. In view of the problems involved in the above 
mentioned schemes, another solution is needed. One such 
way is the Filter-based Addressing Protocol. Here, present a 
lightweight protocol called Filter-based Addressing 
Protocol (FAP) that configures mobile ad hoc nodes based 
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on a distributed address database stored in filters.This 
protocol maintains a distributed database stored in filters 
containing the currently allocated addresses in a compact 
fashion [4]. FAP consider both the Cuckoo filter and 
Sequence filter. But here used cuckoo filters that can 
replace traditional Bloom filters for many approximate set-
membership test applications [1]. Cuckoo filters allow 
adding and removing items dynamically while achieving 
higher lookup performance and also use less space than 
conventional, and non-deletion-supporting Bloom filters. 
Cuckoo filters also have lower space overhead than space-
optimized Bloom filters. 
A limitation of standard Bloom filters is that one cannot 
remove existing items without rebuilding the entire filter. 
To solve this problem here we used the cuckoo filter,It is a 
practical data structure that provides four major advantages. 
1. It supports adding and removing items dynamically; 
2. It provides higher lookup performance than traditional 

Bloom filters. 
3. It is easier to implement than alternatives such as the 

quotient filter; and 
4. It uses less space than Bloom filters in many practical 
applications, if the target false positive rate Є is less than 
3%. 
CUCKOO FILTER : 
The cuckoo filter is a compact data structure for 
approximate set-membership queries where items can be 
added and removed dynamically in O(1) time. Essentially, 
it is a highly compact cuckoo hash table that stores 
fingerprints (i.e., short hash values) for each item. This 
technique was first introduced in previous work [6], but 
there the context was improving the lookup and insert 
performance of regular cuckoo hash tables where full keys 
were stored. In contrast, this paper focuses on optimizing 
and analyzing the space efficiency when using partial-key 
cuckoo hashing with only fingerprints, to make cuckoo 
filters competitive with or even more compact than Bloom 
filters[1]. 
Basic Cuckoo Hash Table:  
Cuckoo hashing [13] is an open addressing hashing scheme 
to construct space-efficient hash tables [6]. A basic cuckoo 
hash table consists of an array of buckets where each item 
has two candidate buckets determined by hash functions 
h1(x) and h2(x) (see Figure 5). Looking up an item checks 
both buckets to see whether either contains this item. If 
either of its two buckets is empty, we can insert a new item 
into that free bucket; if neither bucket has space, it selects 
one of the candidate buckets (e.g., bucket 6), kicks out the 
existing item (“a”), and re-inserts this victim item to its own 
alternate location (bucket 4). Displacing the victim may 
also require kicking out another existing item (“c”), so this 
procedure may repeat until a vacant bucket is found, or 
until a maximum number of displacements is reached (e.g., 
500 times in our implementation). If no vacant bucket is 
found, the hash table is considered too full to insert and an 
expansion process is scheduled. Though cuckoo hashing 
may execute a sequence of displacements, its amortized 
insertion time is still O(1). Cuckoo hashing ensures high 
space occupancy because it can refine earlier item-
placement decisions when inserting new items. 

 
Fig. 5: A cuckoo hash table with eight buckets 

 
Dynamic Insert  
When inserting new items, cuckoo hashing may relocate 
existing items to their alternate locations in order to make 
room for the new ones. Cuckoo filters store only the item’s 
fingerprints in the hash table and therefore have no way to 
read back and rehash the original items to find their 
alternate locations (as in traditional cuckoo hashing). 
Thereforehere partial-key cuckoo hashing is usedto derive 
an item’s alternate location using only its fingerprint. For an 
item x, hashing scheme calculates the indexes of the two 
candidate buckets i1and i2as follows:  

i1= HASH(x), 
i2= i1⊕HASH(x′s fingerprint). …………Eq. (1) 

 
The exclusive-OR (X-OR) operationin Eq. (1) ensures an 
important property that is i1can be computed using the same 
formula from i2and the fingerprint; so, to displace a key 
originally in bucket i (no matter whether i is i1or i2), we can 
directly calculate its alternate bucket j from the current 
bucket index i and the fingerprint stored in this bucket by, 

j = i ⊕HASH(fingerprint)………………. Eq. (2) 
 
Hence, insertion can complete using only information in the 
table, and never has to retrieve the original item x.  
Note that here hash the fingerprint before it is XOR with 
the index of its current bucket, in order to help distribute the 
items uniformly in the table. If alternate location is 
calculated by “i ⊕Fingerprint” without hashing the 
fingerprint, the items kicked out from nearby buckets will 
land close to each other in the table, assuming the size of 
the fingerprint is small compared to the table size. Hashing 
ensures that items kicked out can land in an entirely 
different part of the hash table.  
Partial-Key Cuckoo Hashing Ensure High Occupancy: 
The values of i1 and i2 calculated by Eq. (1) are uniformly 
distributed, individually. They are not necessarily indepen-
dent of each other (as required by standard cuckoo hashing). 
Given the value of i1, the number of possible values of i2 is 
at most 2f where each fingerprint is f bits; when f ≤ log2 r 
where r is the total number of buckets, the choice of i2 is 
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only a subset of all the r buckets of the entire hash table. 
For example, using one-byte fingerprints, given i1 there are 
only up to 2f = 256 different possible values of i2 across the 
entire table; thus i1 and i2 are dependent when the hash table 
contains more than 256 buckets. This situation is relatively 
common, for example, when the cuckoo filter targets a large 
number of items but a moderately low false positive rate. 
Dynamic Delete  
With partial-key cuckoo hashing, deletion is simple. Given 
an item to delete, here check both its candidate buckets; if 
there is a fingerprint match in either bucket, we just remove 
the fingerprint from that bucket. This deletion is safe even 
if two items stored in the same bucket happen to have the 
same fingerprint. For example, if item x and y have the 
same fingerprint, and both items can reside in bucket i1, 
partial-key cuckoo hashing ensures that bucket i2 = 
i1⊕HASH(fingerprint) must be the other candidate bucket 
for both x and y. As a result, if we delete x, it does not 
matter if we remove the fingerprint added when inserting x 
or y; the membership of y will still return positive because 
there is one fingerprint left that must be reachable from 
either bucket i1 and i2.  
Optimizing Space Efficiency  
Increasing bucket capacity (i.e., each bucket may contain 
multiple fingerprints) can significantly improve the 
occupancy of a cuckoo hash table [4]; mean while, 
comparing more fingerprints on looking up each bucket 
also requires longer fingerprints to retain the same false 
positive rate (leading to larger tables). Here explored 
different configuration settings and found that having four 
fingerprints per bucket achieves a sweet point in terms of 
the space overhead per item. Here main focus on the cuckoo 
filters that use two hash functions and four fingerprints per 
bucket [13].  
 

IV.  CONCLUSION 
Address assignment in ad hoc networks should be 
automatic, fast, and without collisions. Here proposed a 
Filter based Addressing protocol (FAP), which uses address 
filters to reduce the control load and the delay to allocate 
addresses. Besides, filters allow an accurate partition 
merging detection and increase the protocol robustness. 
Here describe the use of cuckoo filter and sequence filter to 
design a filter based protocol. Cuckoo filters are a new data 
structure for approximate set membership queries that can 
be used for many networking problems formerly solved 
using Bloom filters. Cuckoo filters improve upon Bloom 
filters in three ways: 1. support for deleting items 
dynamically; 2. better lookup performance; and 3. better 
space efficiency for applications requiring low false 
positive rates. A cuckoo filter stores the fingerprints of a set 
of items based on cuckoo hashing, thus achieving high 
space occupancy.  
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