
A Filter Base Addressing Protocol for Node Auto-
Configuration in Wireless Ad Hoc Network Using

Cuckoo Filter.
Mr. Bhushan A. Badgujar. Mrs. Swati patil. Mr. Mayur Agrawal.

Computer Science &Engineering (M.E.2nd Year) Assist. Professor. Assist.Professor.
G.H.R.I.E.M.,Jalgaon. G.H.R.I.E.M.,Jalgaon. G.H.R.I.E.M.,Jalgaon

Jalgaon. Jalgaon. Jalgaon.

Abstract— Mobile ad hoc networks do not have fixed
infrastructure. Nodes are keep on joining and leaving the
network dynamically. Assigning addresses for mobile nodes is
a challenging task. The difficulty is even raised due partitions
in network and dynamic joining and leaving of the nodes in
MANET. Address collisions are quite a common problem in
mobile ad hoc networks. Here, a light weight protocol called
Filter-based Addressing Protocol (FAP) is used to solve this
problem that configures mobile ad hoc nodes based on a
distributed address database stored in filters. This paper
describe the use of two filters cuckoo filter and sequence
filter to design a filter based protocol.
Cuckoo filters is used to adding and removing items
dynamically while achieving higher lookup performance and
also use less space than conventional Bloom filters for
applications that require low false positive rates. Cuckoo
filters also have lower space overhead than space-optimized
Bloom filters.

Keywords—Ad-hoc networks, Addressing mechanisms, IP
Address configuration, Filters.

I. INTRODUCTION
Mobile ad hoc networks connect mobile devices in an
infrastructure without wires and configure themselves
continuously to connect with network.Mobile nodes are free
to move in the network as per their wish and have
frequently changing positions and links. But every node in
network acts as a router. creating a mobile ad hoc network
means providing each node with the necessary information
for routing the traffic [4]. These networks may operate by
themselves or may get connected to larger internet. This
makes it a dynamic, autonomous topology[10].

Fig.1 MANET

Now-a-days, many distributed applications prefer mobile ad
hoc networks as there is no centralized administration.
Mobile ad hoc networks are based on dynamic multihop
topologies for communication and do not have any previous
infrastructure. In addition, network partitioning is a
significant problem which unfortunately is not properly
taken care of Mobility of nodes, channel fading and many
other issues disturb the control over the distributed network.
Initialization of network is also not an easy task due to the
lack of servers [11]. Achieving multi-hop routing and full
connectivity makes a unique addressing network is more
essential. Self-management makes this network more
complex. Further,DHCP (Dynamic Host configuration
protocol) and NAT(Network Allocation Table) do not serve
the distributed nature like dynamic partitioning and
merging of the network. This paper describes the FAP
model which uses filters to solving the above mentioned
issues.Here, distributed database containing the currently
allocated addresses is maintained in filters in a compact
fashion [4]. To design a filter-based protocol, here use two
filters called a Cuckoo and a Sequence filter. This scheme
ensures not only the univocal address configuration of the
nodes joining the mobile network and address collision
detection after partition merging. this is a simple way
because here every node has the knowledge of the already
assigned addresses. Also, to easily detect network
partitions.in this technique a hash of the filter is provided as
the partition identifier [4]. But here used Cuckoo filter
instead of conventional Boom filters. Because Cuckoo
filters allow adding and removing items dynamically while
achieving higher lookup performance [13], and also use less
space than conventional and non-deletion-supporting
Bloom filters [1]. Here we presents the cuckoo filter, It is a
data structure that can replace both counting and traditional
Bloom filters with three major advantages:
1. itsupports adding and removing items dynamically;
2. itachieves higher lookup performance; and
3. it requiresless space than a space-optimized Bloom
filter when the target false positive rate e is less than 3%.

II. RELATED WORK

2.1. Sequence Filters:
Another structure to store and compact addresses based on
the sequence of the addresses called Sequence filter. In this
filter, each address suffix is represented by one bit. The
position of the bit in the filter determines the address suffix,
Therefore, there is no false-positive or false-negative in the

Bhushan A. Badgujar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2724-2728

www.ijcsit.com 2724

Sequence filter. It stores and compacts addresses based on
the sequence of addresses. This filter is created bythe
concatenation of the first address of the address sequence,
which they call initial element (a0), with a r-bit vector,
where r is the address range size [4].
2.2. Bloom Filters:
Bloom filters are a data structure with high compression
capacity, used on many applications, like IP traceback [4][5]
and web cache [9]. A Bloom filter is a vector of m bits
representing a set A = {a1, a2, a3, . . . , an} composed of n
elements. The elements are inserted in the filter through a
set of independents hash functions (h1, h2, . . . ,hk) whose
outputs are uniformly distributed over m bits. Firstly, the bit
vector is set to zero. After that, each element ai ∈ A is
hashed by each of the k hash functions, which result
represents a position to be set as 1 on the m bit vector, as
shown in Fig. 1. To verify if an element aj belongs to A,
They check whether the bits of the array corresponding to
the positions h1(aj), h2(aj), . . . ,hk(aj) are all set to 1. If at
least one bitis set to 0, then aj is not on the filter. On the
contrary, it is assumed that the element belongs to A. There
is, however, a probability of false-positives [3]. By the
probability of a bit to be 0 after the insertion of n elements,
P0, given by,

P0 = (1-)kn……………………. (1)

They obtain the false-positive probability, Pfp, given by,

Pfp = (1- P0)
k = (1- (1-)kn)k…..(2)

Fig.2. Insertion of elements in the filter.

Equation-2. shows that the false-positive probability
decreases when the number of elements, n, of set A is
decreased or the size of the filter, m, is increased. Besides,
by the derivative of Eq. 2, they obtain the value of k that
minimizes the false positive probability, which is given by,

K = []…………………… (3)

To remove elements from the filter, a counter for each bit of
the filter is introduced, as shown in Fig.3. Each counter ci,

shows the number of times each bit was set, and ∑0
m−10

gives the number of elements on the filter. the authors [7]

show that the probability of a counter be greater or equal to
i, P(c ≥ i), is given by,

P(c ≥ i) ≤ m ()i…………....(4)

To avoid false-negatives, it is necessary to guarantee that
the counters do not overflow. Supposing 4-bit counters (i =
16), a false-positive ratio of 5% and the corresponding ideal
k, the overflow probability is lower than m・10−12, which
is considered negligible [3][7].

Fig.3. Bloom filter with counters.

2.3 Bloom Filters and Variants:
Here we compare standard Bloom filters and the variants
that include support for deletion or better lookup
performance.Cuckoo filters achieve higher space efficiency
and performance than these data structures [1].
2.3.1. Standard Bloom filters [9]:
This filter provides a compact representation of a set of
items that supports two operations: Insert and Lookup. A
Bloom filter allows a tunable false positive rate Є so that a
query returns either “definitely not” (with no error),or
“probably yes” (with probability Є of being wrong).
Thelower Є is, the more space the filter requires.A Bloom
filter consists of k hash functions and a bit arraywith all bits
initially set to “0”. To insert an item, it hashesthis item to k
positions in the bit array by k hash functions,and then sets
all k bits to “1”. Lookup is processed similarly,except it
reads k corresponding bits in the array: if all thebits are set,
the query returns true; otherwise it returns false.Bloom
filters do not support deletion. Bloom filters can be very
space-efficient, but are not optimal [3]. For a false positive

Bhushan A. Badgujar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2724-2728

www.ijcsit.com 2725

rate Є, a space-optimized Bloom filter uses k = log2 (1/Є)
hash functions. Such a Bloom filter can store each item
using 1.44 log2 (1/Є) bits, which depends only on (1/Є)
rather than the item size or the total number of items.The
information-theoretic minimum requires log2 (1/Є) bits per
item, so a space-optimized Bloom filter imposes a
44%space overhead over the information-theoretic lower
bound.The information theoretic optimum is essentially
achievable for a static set by using fingerprints and a perfect
hash table [6]. To efficiently handle deletions, we replace a
perfect hash function with a well-designed cuckoo hash
table [13].
2.3.2 Counting Bloom filters [7]:
This extend Bloom filters to allow deletions. A counting
Bloom filter uses an array of countersin place of an array of
bits. An insert increment the value of k counters instead of
simply setting k bits, and a lookupchecks if each of the
required counters is non-zero. The delete operation
decrements the values of these k counters. To prevent
arithmetic overflow (i.e., incrementing a counter that hasthe
maximum possible value), each counter in the array must be
sufficiently large in order to retain the Bloom filter’s
properties.In practice, the counter consists of four or more
bits,and a counting Bloom filter therefore requires 4X more
spacethan a standard Bloom filter. (One can construct
countingBloom filters to use less space by introducing a
secondary hash table structure to manage overflowing
counters, at the expense of additional complexity.)
2.3.3 Blocked Bloom filters [10]: do not support deletion,
but providebetter spatial locality on lookups. A blocked
Bloom filter consists of an array of small Bloom filters,
each fitting in one CPU cache line. Each item is stored in
only one of these small Bloom filters determined by hash
partitioning. As a result,every query causes at most one
cache miss to load that Bloomfilter, which significantly
improves performance. A drawbackis that the false positive
rate becomes higher because of theimbalanced load across
the array of small Bloom filters.
2.3.4 d-left Counting Bloom filters [5]: are similar to the
approach we use here. Hash tables using d-left hashing [9]
store fingerprints for stored items. These filters delete items
by removing their fingerprint. Compared to counting Bloom
filters, they reduce the space cost by 50%, usually requiring
1.5-2X thespace compared to a space-optimized non-
deletable Bloom filter. Cuckoo filters achieve better space
efficiency than d-leftcounting Bloom filters as we show,
and have other advantages,including simplicity.
2.3.5 Quotient filters [9]: are also compact hash tables that
storefingerprints to support deletion. Quotient filters uses a
technique similar to linear probing to locate a fingerprint,
and thus provide better spatial locality. However, they
require additional meta-data to encode each entry, which
requires 10 ~ 25% more space than a comparable standard
Bloomfilter. Moreover, all of its operations must decode a
sequence of table entries before reaching the target item,
and the morethe hash table is filled, the longer these
sequences become.As a result, its performance drops
significantly when the occupancyof the hash table exceeds
75%.

2.3.6 Limitations of conventional Bloom filters [1]: One
major limitation of Bloom filters is that the existing items
cannotbe removed without rebuilding the entire filter.
Severalproposals have extended classic Bloom filters to
supportdeletion, but with significant space overhead:
counting Bloom filters [3] are 4Xlarger and the recent d-
leftcounting Bloom filters (dl-CBFs) [8], which adopt a
hashtable-based approach, are still about 2X larger than a
space-optimized Bloom filter.

III. PROPOSED WORK.

FILTER-BASED ADDRESSING PROTOCOL (FAP) :
This protocol aims to dynamically auto-configure
addresses, identifying and solving addresses collisions with
a low control load, even when there are nodes joining the
network or partition merging [3][5]. To obtained all these
objectives, Here we used the Filter-based Addressing
Protocol (FAP) that uses filters as data structure to
compactly represent the current set of allocated addresses.
With filters, the partition detection becomes easier and the
number of control messages is reduced. They also use the
hash of the filter, that represent filter signature, as a
partition identifier. The filter signature represents a set of
nodes, and fits well for easily detecting partitions on the
network. It uses the filter signature (a hash of the filter) as
a partition identifier instead of random numbers. The filter
signature (i.e.Hash of filter) represents the set of all the
nodes within the partition. Therefore, if the set of assigned
address of the node is changes, the filter signature also
changes.Filter is present at every node to simplify frequent
node joining events and reduce the control overhead
required to solve address collisions inherent in random
assignments [10].

Fig. 4 Filtering of Traffic at different layers.

Centralized addressing schemes are not suitable for mobile
adhoc networks because there are no servers. Further,
simple distributed schemes are vulnerable to duplicated
addresses which may result in high probability of address
collisions. In view of the problems involved in the above
mentioned schemes, another solution is needed. One such
way is the Filter-based Addressing Protocol. Here, present a
lightweight protocol called Filter-based Addressing
Protocol (FAP) that configures mobile ad hoc nodes based

Bhushan A. Badgujar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2724-2728

www.ijcsit.com 2726

on a distributed address database stored in filters.This
protocol maintains a distributed database stored in filters
containing the currently allocated addresses in a compact
fashion [4]. FAP consider both the Cuckoo filter and
Sequence filter. But here used cuckoo filters that can
replace traditional Bloom filters for many approximate set-
membership test applications [1]. Cuckoo filters allow
adding and removing items dynamically while achieving
higher lookup performance and also use less space than
conventional, and non-deletion-supporting Bloom filters.
Cuckoo filters also have lower space overhead than space-
optimized Bloom filters.
A limitation of standard Bloom filters is that one cannot
remove existing items without rebuilding the entire filter.
To solve this problem here we used the cuckoo filter,It is a
practical data structure that provides four major advantages.
1. It supports adding and removing items dynamically;
2. It provides higher lookup performance than traditional

Bloom filters.
3. It is easier to implement than alternatives such as the

quotient filter; and
4. It uses less space than Bloom filters in many practical
applications, if the target false positive rate Є is less than
3%.
CUCKOO FILTER :
The cuckoo filter is a compact data structure for
approximate set-membership queries where items can be
added and removed dynamically in O(1) time. Essentially,
it is a highly compact cuckoo hash table that stores
fingerprints (i.e., short hash values) for each item. This
technique was first introduced in previous work [6], but
there the context was improving the lookup and insert
performance of regular cuckoo hash tables where full keys
were stored. In contrast, this paper focuses on optimizing
and analyzing the space efficiency when using partial-key
cuckoo hashing with only fingerprints, to make cuckoo
filters competitive with or even more compact than Bloom
filters[1].
Basic Cuckoo Hash Table:
Cuckoo hashing [13] is an open addressing hashing scheme
to construct space-efficient hash tables [6]. A basic cuckoo
hash table consists of an array of buckets where each item
has two candidate buckets determined by hash functions
h1(x) and h2(x) (see Figure 5). Looking up an item checks
both buckets to see whether either contains this item. If
either of its two buckets is empty, we can insert a new item
into that free bucket; if neither bucket has space, it selects
one of the candidate buckets (e.g., bucket 6), kicks out the
existing item (“a”), and re-inserts this victim item to its own
alternate location (bucket 4). Displacing the victim may
also require kicking out another existing item (“c”), so this
procedure may repeat until a vacant bucket is found, or
until a maximum number of displacements is reached (e.g.,
500 times in our implementation). If no vacant bucket is
found, the hash table is considered too full to insert and an
expansion process is scheduled. Though cuckoo hashing
may execute a sequence of displacements, its amortized
insertion time is still O(1). Cuckoo hashing ensures high
space occupancy because it can refine earlier item-
placement decisions when inserting new items.

Fig. 5: A cuckoo hash table with eight buckets

Dynamic Insert
When inserting new items, cuckoo hashing may relocate
existing items to their alternate locations in order to make
room for the new ones. Cuckoo filters store only the item’s
fingerprints in the hash table and therefore have no way to
read back and rehash the original items to find their
alternate locations (as in traditional cuckoo hashing).
Thereforehere partial-key cuckoo hashing is usedto derive
an item’s alternate location using only its fingerprint. For an
item x, hashing scheme calculates the indexes of the two
candidate buckets i1and i2as follows:

i1= HASH(x),
i2= i1⊕HASH(x′s fingerprint). …………Eq. (1)

The exclusive-OR (X-OR) operationin Eq. (1) ensures an
important property that is i1can be computed using the same
formula from i2and the fingerprint; so, to displace a key
originally in bucket i (no matter whether i is i1or i2), we can
directly calculate its alternate bucket j from the current
bucket index i and the fingerprint stored in this bucket by,

j = i ⊕HASH(fingerprint)………………. Eq. (2)

Hence, insertion can complete using only information in the
table, and never has to retrieve the original item x.
Note that here hash the fingerprint before it is XOR with
the index of its current bucket, in order to help distribute the
items uniformly in the table. If alternate location is
calculated by “i ⊕Fingerprint” without hashing the
fingerprint, the items kicked out from nearby buckets will
land close to each other in the table, assuming the size of
the fingerprint is small compared to the table size. Hashing
ensures that items kicked out can land in an entirely
different part of the hash table.
Partial-Key Cuckoo Hashing Ensure High Occupancy:
The values of i1 and i2 calculated by Eq. (1) are uniformly
distributed, individually. They are not necessarily indepen-
dent of each other (as required by standard cuckoo hashing).
Given the value of i1, the number of possible values of i2 is
at most 2f where each fingerprint is f bits; when f ≤ log2 r
where r is the total number of buckets, the choice of i2 is

Bhushan A. Badgujar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2724-2728

www.ijcsit.com 2727

only a subset of all the r buckets of the entire hash table.
For example, using one-byte fingerprints, given i1 there are
only up to 2f = 256 different possible values of i2 across the
entire table; thus i1 and i2 are dependent when the hash table
contains more than 256 buckets. This situation is relatively
common, for example, when the cuckoo filter targets a large
number of items but a moderately low false positive rate.
Dynamic Delete
With partial-key cuckoo hashing, deletion is simple. Given
an item to delete, here check both its candidate buckets; if
there is a fingerprint match in either bucket, we just remove
the fingerprint from that bucket. This deletion is safe even
if two items stored in the same bucket happen to have the
same fingerprint. For example, if item x and y have the
same fingerprint, and both items can reside in bucket i1,
partial-key cuckoo hashing ensures that bucket i2 =
i1⊕HASH(fingerprint) must be the other candidate bucket
for both x and y. As a result, if we delete x, it does not
matter if we remove the fingerprint added when inserting x
or y; the membership of y will still return positive because
there is one fingerprint left that must be reachable from
either bucket i1 and i2.
Optimizing Space Efficiency
Increasing bucket capacity (i.e., each bucket may contain
multiple fingerprints) can significantly improve the
occupancy of a cuckoo hash table [4]; mean while,
comparing more fingerprints on looking up each bucket
also requires longer fingerprints to retain the same false
positive rate (leading to larger tables). Here explored
different configuration settings and found that having four
fingerprints per bucket achieves a sweet point in terms of
the space overhead per item. Here main focus on the cuckoo
filters that use two hash functions and four fingerprints per
bucket [13].

IV. CONCLUSION
Address assignment in ad hoc networks should be
automatic, fast, and without collisions. Here proposed a
Filter based Addressing protocol (FAP), which uses address
filters to reduce the control load and the delay to allocate
addresses. Besides, filters allow an accurate partition
merging detection and increase the protocol robustness.
Here describe the use of cuckoo filter and sequence filter to
design a filter based protocol. Cuckoo filters are a new data
structure for approximate set membership queries that can
be used for many networking problems formerly solved
using Bloom filters. Cuckoo filters improve upon Bloom
filters in three ways: 1. support for deleting items
dynamically; 2. better lookup performance; and 3. better
space efficiency for applications requiring low false
positive rates. A cuckoo filter stores the fingerprints of a set
of items based on cuckoo hashing, thus achieving high
space occupancy.

REFERENCES.
[1] Bin fan, david G. Andersen, Michael kaminsky, michael D.

Mitzenmacher “Cuckoo Filter: Practically Better Than Bloom”
CoNEXT’14, Dec 02-05 2014, Sydney, Australia ACM 978-1-4503-
3279-8/14/12.

[2] Hyesook Lim, Senior Member, IEEE, Kyuhee Lim, Nara Lee, and
Kyong-Hye Park, Student Member, IEEE “On Adding Bloom Filters
to Longest Prefix Matching Algorithms” IEEE TRANSACTIONS
ON COMPUTERS, VOL. 63, NO. 2, FEBRUARY 2014.

[3] JánosTapolcai, Member, IEEE, Josef Biro, Member, IEEE,
PéterBabarczi, Member, IEEE, AndrásGulyás, ZalánHeszberger,
Member, IEEE, and Dirk Trossen “Optimal False-Positive-Free
Bloom Filter Design for Scalable Multicast Forwarding” IEEE/ACM
TRANSACTIONS ON NETWORKING 1063-6692 © 2014 IEEE.

[4] Natalia Castro Fernandes, Marcelo DufflesDonato Moreira, and Otto
Carlos Muniz Bandeira Duarte “An Efficient and Robust Addressing
Protocol for Node Autoconfiguration in Ad Hoc Networks”
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 21, NO.
3, JUNE 2013

[5] XiaohuaTian, Shanghai Jiao Tong University Yu Cheng, Illinois
Institute of Technology ”Bloom Filter-Based Scalable Multicast:
Methodology, Design and Application ”IEEE Network •
November/December 2013.

[6] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: “Compact and
concurrent memcache with dumber caching and smarter hashing.” In
Proc. 10th USENIX NSDI, Lombard, IL, Apr. 2013.

[7] Deke Guo, Yunhao Liu, Xiangyang Li, Panlong Yang, “False
Negative Problem of Counting Bloom Filter”, IEEE Transactions on
Knowledge and Data Engineering, IEEE, vol.22, no.5, pp.651-664,
2010.

[8] Gianni Antichi, DomenicoFicara, Stefano Giordano, Gregorio
Procissi, and Fabio Vitucci,University of Pisa” Counting Bloom
Filters for Pattern Matching and Anti-Evasion at the Wire
Speed”IEEE Network January/February 2009.

[9] F. Putze, P. Sanders, and S. Johannes, “Cache-, Hash- and Space-
Efficient Bloom Filters” Experimental Algorithms (Springer Berlin /
Heidelberg, 2007), pp. 108-121.

[10] M. Fazio, M. Villari, and A. Puliafito, “IP address autoconfiguration
in ad hoc networks: design, implementation and measurements,”
ComputerNetworks, vol. 50, no. 7, pp. 898–920, 2006.

[11] KilianWeniger “ PACMAN: Passive Auto configuration for Mobile
Ad Hoc Networks” IEEE JOURNAL ON SELECTED AREAS IN
COMMUNICATIONS, VOL. 23, NO. 3, MARCH 2005.

[12] S. Nesargi and R. Prakash, “MANETconf: configuration of hosts in a
mobile ad hoc network,” in Twenty-First Annual Joint Conference
ofthe IEEE Computer and Communications Societies (IEEE
INFOCOM2002), vol. 2. IEEE, jun 2002.

[13] R. Pagh and F. Rodler, “Cuckoo Hashing,” Journal of Algorithms,
vol. 51, no. 2 (May 2004), pp.122-144.

Bhushan A. Badgujar et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (3) , 2015, 2724-2728

www.ijcsit.com 2728

